Skip to main content

Generic container idioms

Developing generic containers in C++ can become complex if you want to develope truly generic containers (as much as they can get). Relaxing the requirements on type T is the key behind developing truly generic containers. There a few C++ idioms to actually achieve the "lowest denominator" possible with requirements on type T.

It is easy to come up with a generic stack which requires following operations defiend on type T: a default constructor, a copy constructor, a non-throwing destructor and a copy assignment operator. But thats too much!

The requirements can be reduced to the folloing list: a copy constructor and a non-throwing destructor.

To achieve this, a generic container should be able to allocate uninitialized memory and invoke constructor(s) only once on each element while "initializing" them. This is possible using following two techniques:

1. operator new:
void * mem = operator new (sizeof (T) * NUMBER_OF_ELEMENTS);

2. construct helper using placement new:
template <class T1, class T2>
void construct (T1 *p, const T2 &value) {
new (p) T1(value);
}

operator new allocates uninitialized memory. It is a fancy way of calling malloc.
The construct helper template function invokes placement new and in turn invokes a copy constructor on the initialized memory. The pointer p is supposed to be one of the uninitialized memory chunks allocated using operator new.

Moreover, pointers in the range [end, end_of_allocated_range) should not point to objects of type T, but to uninitialized memory. (end can be considered an iterator pointing at an element one past the last initialized element of the container)

When an element is removed from the container, destructot should be invoked on them. A destroy helper function can be helpful here as shown.

template <class T>
void destroy (T *p) {
p->~T();
}

Similarly, to delete a range, another overloaded destroy function which takes two iterators could be useful. It essentially invokes first destroy helper on each element in the sequence.

Please see More C++ gems for elaborate articles on this topic. (authors Hurb Sutter and Matthew H. Austern)

Comments

Sumant said…
Also see more idioms related to developing generic containers in the open content wikibook: "More C++ Idioms"

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Understanding Fold Expressions

C++17 has an interesting new feature called fold expressions. Fold expressions offer a compact syntax to apply a binary operation to the elements of a parameter pack. Here’s an example. template <typename... Args> auto addall(Args... args) { return (... + args); } addall(1,2,3,4,5); // returns 15. This particular example is a unary left fold. It's equivalent to ((((1+2)+3)+4)+5). It reduces/folds the parameter pack of integers into a single integer by applying the binary operator successively. It's unary because it does not explicitly specify an init (a.k.a. identity) argument. So, let add it. template <typename... Args> auto addall(Args... args) { return (0 + ... + args); } addall(1,2,3,4,5); // returns 15. This version of addall is a binary left fold. The init argument is 0 and it's redundant (in this case). That's because this fold expression is equivalent to (((((0+1)+2)+3)+4)+5). Explicit identity elements will come in handy a little la…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…