Skip to main content

Service Configurator pattern and singleton deletion

The Service Configurator pattern is about linking in additional functionality in an application dynamically by means of an API such as dlsym/dlopen provided by the OS/run-time linker. Almost all popular platforms provide this functionality. This post is about programmatically, dynamically loaded libraries (hence forth called simply library)(e.g., .DLL, .so) that contain sigletons.

One of my previous posts talks about singleton deletion. If the sinlgleton in such a library is a static instance then it is not deleted untill the library is closed using appropriate API such as dlclose. This can be quite undesirable or awkward at times. All the destruction techniques based on static variables fail if you want to destroy the singleton without unloading the library. A possible variant of the singleton in such a case is given below.

class Singleton {
Singleton ();
static Singleton *instance () {
if (instance_ == 0)
instance_ = new Singleton;
return instance_;
static void operator delete (void *arg) // operator delete is implicitely static
::delete arg; // Call the global delete operator.
instance_ = 0; // A very important step.
static Singleton * instance_;
Singleton * Singleton::instance_ = 0;

The overloaded delete operator allows us to nullify the static instance_ pointer to the singleton transperantly to the user/owner of the sinlgeton. If the singleton is required again then can be instantiated again. The owner of the singleton can use the const auto_ptr idiom to ensure that the ownership of the singleton is never transferred and it is always deleted.


Anonymous said…
How is the static delete operator invoked?
Sumant said…
The operator delete is invoked as you would do for any other dynamically allocated object.
for example, delete Singleton::instance();
Or else
{ // for automatic deletion
const std::auto_ptr owner(Singleton::instance());
Web development said…
What nice and professional article you have held, really you have impressed me. I respect your comment from my bottom of heart.
descargar anime said…
Hello, this is my first comment on this blog and I wanted to say that I'm really amazed with this blog after reading this article about C++ in which I share your same opinion. I will definitely bookmark this page!
manho valentine said…
Anonymous Anonymous said...
How is the static delete operator invoked?

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Understanding Fold Expressions

C++17 has an interesting new feature called fold expressions. Fold expressions offer a compact syntax to apply a binary operation to the elements of a parameter pack. Here’s an example. template <typename... Args> auto addall(Args... args) { return (... + args); } addall(1,2,3,4,5); // returns 15. This particular example is a unary left fold. It's equivalent to ((((1+2)+3)+4)+5). It reduces/folds the parameter pack of integers into a single integer by applying the binary operator successively. It's unary because it does not explicitly specify an init (a.k.a. identity) argument. So, let add it. template <typename... Args> auto addall(Args... args) { return (0 + ... + args); } addall(1,2,3,4,5); // returns 15. This version of addall is a binary left fold. The init argument is 0 and it's redundant (in this case). That's because this fold expression is equivalent to (((((0+1)+2)+3)+4)+5). Explicit identity elements will come in handy a little la…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…