Skip to main content

Forgotton friend: pointer/reference to an array

The name of an array "degenerates" into a pointer to the first element of the array. For example,
int Array [10];
int *p = Array;

there is a quite a bit loss of information here. Specifically, such a decay loses its type information and specifically, its dimensions. The type of Array is "An integer array of 10 integers." So we lost the word "array" and we also lost the length (10) of the array.

An advantage of using pointer to an array is that this type information is retained. int (*q)[10] = &Array; It declares a pointer q to to an array of 10 integers. So whats the big deal? Compiler has this information and it is happy to let us take advantage of it.

template <int p, int q, int r>
int average (int (&array)[p][q][r]) { ... }

main () {
int q [][2][2] = {
{ {1, 2}, {3, 4} },
{ {5, 6}, {7, 8} }
average (a); /// This call knows the dimensions of the array.
This type information can be exploited to implement the average function using template meta-programming techniques! This can be useful in generative programming as well.


Kaushal said…
hi sumant,
place your google adsense correctly across the page for better results.

kaushal chandak
Forgotten friend :)
Sumant said…
Thanks Kaushal!
I have put some google ads just for kicks! I don't want the ads to cause difficulty while reading. C++ Truths is for non-profit!

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Understanding Fold Expressions

C++17 has an interesting new feature called fold expressions. Fold expressions offer a compact syntax to apply a binary operation to the elements of a parameter pack. Here’s an example. template <typename... Args> auto addall(Args... args) { return (... + args); } addall(1,2,3,4,5); // returns 15. This particular example is a unary left fold. It's equivalent to ((((1+2)+3)+4)+5). It reduces/folds the parameter pack of integers into a single integer by applying the binary operator successively. It's unary because it does not explicitly specify an init (a.k.a. identity) argument. So, let add it. template <typename... Args> auto addall(Args... args) { return (0 + ... + args); } addall(1,2,3,4,5); // returns 15. This version of addall is a binary left fold. The init argument is 0 and it's redundant (in this case). That's because this fold expression is equivalent to (((((0+1)+2)+3)+4)+5). Explicit identity elements will come in handy a little la…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…