Skip to main content

const overload functions taking char pointers

Always have two overloaded versions of functions that take
char * and const char * parameters. Declare (but don't define if not needed)
a function that takes const char* as a parameter when you have defined
a function that accepts a non-const char* as a parameter.

#include <iostream>
#include <iomanip>

static void foo (char *s) {
std::cout << "non-const " << std::hex << static_cast <void *>(s) << std::endl;
static void foo (char const *s) {
std::cout << "const " << std::hex << static_cast <void const *>(s) << std::endl;

int main (void)
char * c1 = "Literal String 1";
char const * c2 = "Literal String 1";
foo (c1);
foo (c2);
foo ("Literal String 1");
//*c1 = 'l'; // This will cause a seg-fault on Linux.
std::cout << c2 << std::endl;

return 0;

Because of default conversion rule from string literal to char *,
the call to foo using in-place literal goes completely undetected
through the eyes of compiler's type system.

Interestingly enough, the addresses of all the identical string literals
is the same, irrespective of whether it is assigned to const or non-const.
Internally though, they are stored on the const DATA page and modifying
them causes a seg-fault.


Steven said…
Hi there,

Could you explain why the *c1 = 'l' segfaults under Linux? To me it looks like modifying a proper (non const) string?

Sumant said…
"Literal String 1" is the same for all the char pointers, const or non-const. The compiler detects uniqueness of the initializer strings and creates exactly one copy of it in the DATA pages of the process, which are read only. So const and non-const both point to the same const readonly string and therefore an attempt to modify it seg-faults. I think irrespective to what a string literal is assigned, a string literal will always be in the DATA page readonly.
Suman said…
What you ascribe to the uniqueness of the literals is only a part answer.It would crash even if there was only one non const char pointer to a literal and you attempted to modify the literal's value. The Standard defines it to be an Undefined behaviour and hence *anything* might happen. Some compilers have the option of making literals writable (Gcc is a case in point).

The rational behind such a decision can be attributed to a number of reasons. One example is, as you've said, the literals being in the DATA segment -- modifying the same is tantamount to creating a self-modifying program.
Sorry, I did not understand how the fact that a string literal converts to char* infers that one needs two overloads for char* and char const*?
Sumant said…
When you declare a function taking a non-const char pointer, you are also declaring your intention to potentially change the input parameter. If you really are sure that you would never change the input parameter string use const char pointer instead. Now assuming that you do intend to change the input parameter string, you declared it as a non-const char pointer and someone out there passed in a string literal to it. That is a problem. Your function will try to change the string literal which is undefined by standard. To avoid this from happening you can take some help from the compiler. If you just declare a function of the same name and rest of the signature, taking const char pointer as input parameter, compiler will pick that up when someone out there uses a string literal to call it. const char pointer is a better match than non-const char pointer for a string literal. But because it is undefined (remember you just declared it) program won't link.
xander345 said…
if you like c++ you can compile it online here:

32, 64 - windows & Linux - and more programming languages
Amber said…
Of course with modern compilers you **will** get a warning:

test.cpp|16 col 17| warning: deprecated conversion from string constant to ‘char*’ [-Wwrite-strings]

so this advice is a bit obsolete
Sumant Tambe said…
Some people still need old compilers. I do.

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Understanding Fold Expressions

C++17 has an interesting new feature called fold expressions. Fold expressions offer a compact syntax to apply a binary operation to the elements of a parameter pack. Here’s an example. template <typename... Args> auto addall(Args... args) { return (... + args); } addall(1,2,3,4,5); // returns 15. This particular example is a unary left fold. It's equivalent to ((((1+2)+3)+4)+5). It reduces/folds the parameter pack of integers into a single integer by applying the binary operator successively. It's unary because it does not explicitly specify an init (a.k.a. identity) argument. So, let add it. template <typename... Args> auto addall(Args... args) { return (0 + ... + args); } addall(1,2,3,4,5); // returns 15. This version of addall is a binary left fold. The init argument is 0 and it's redundant (in this case). That's because this fold expression is equivalent to (((((0+1)+2)+3)+4)+5). Explicit identity elements will come in handy a little la…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…