Skip to main content

BoostCon'11 video on LEESA: Language for Embedded Query and Traversal

BoostCon'11, held in Aspen, Colorado, was a fantastic conference this year. Not only because I got a chance to present my work on LEESA but also because of the breadth and depth of the topics covered.

LEESA, as you may recall, is an embedded language in C++ to simplify XML programming. LEESA's programming model sits on top of the APIs generated by modern XML data binding tools. LEESA gives you XPath-like syntax (wildcards, child-axis, descendant-axis, tuples) to simplify data extraction from an XML object model.

I had a privilege to talk at length about LEESA in BoostCon'11. In the 1hr 41 minutes long video, I'm talking everything from why you need LEESA, how its implemented using cool C++ techniques, such as templates, meta-programming, compile-time and run-time performance, and what direction it may take in future. Here are the slides of the presentation.

Comments

Anonymous said…
Fascinating and impressive. I'm surprised there aren't any more comments here about Leesa from other people/boosters or is there another forum out there where this is going on? When will there be another update on Leesa in either code or roadmap terms? Can't wait.
Sumant said…
I'm glad you found it interesting. There isn't any forum setup so far. I hope I'll find enough spare time in coming months to push out LEESA 1.0.
mukul said…
I enjoyed the conference a lot. BoostCon attracts a large number of very smart C++ people and it was fun sharing my ideas and hearing what others are up to. yeast infection treatment ! yeast infection prevention
xander345 said…
if you like c++ you can compile it online here: http://codecompiler.info/

32, 64 - windows & Linux - and more programming languages

Popular posts from this blog

Multi-dimensional arrays in C++11

What new can be said about multi-dimensional arrays in C++? As it turns out, quite a bit! With the advent of C++11, we get new standard library class std::array. We also get new language features, such as template aliases and variadic templates. So I'll talk about interesting ways in which they come together.

It all started with a simple question of how to define a multi-dimensional std::array. It is a great example of deceptively simple things. Are the following the two arrays identical except that one is native and the other one is std::array?

int native[3][4];
std::array<std::array<int, 3>, 4> arr;

No! They are not. In fact, arr is more like an int[4][3]. Note the difference in the array subscripts. The native array is an array of 3 elements where every element is itself an array of 4 integers. 3 rows and 4 columns. If you want a std::array with the same layout, what you really need is:

std::array<std::array<int, 4>, 3> arr;

That's quite annoying for two r…

Folding Monadic Functions

In the previous two blog posts (Understanding Fold Expressions and Folding Functions) we looked at the basic usage of C++17 fold expressions and how simple functions can be folded to create a composite one. We’ll continue our stride and see how "embellished" functions may be composed in fold expressions.

First, let me define what I mean by embellished functions. Instead of just returning a simple value, these functions are going to return a generic container of the desired value. The choice of container is very broad but not arbitrary. There are some constraints on the container and once you select a generic container, all functions must return values of the same container. Let's begin with std::vector.
// Hide the allocator template argument of std::vector. // It causes problems and is irrelevant here. template <class T> struct Vector : std::vector<T> {}; struct Continent { }; struct Country { }; struct State { }; struct City { }; auto get_countries…

Covariance and Contravariance in C++ Standard Library

Covariance and Contravariance are concepts that come up often as you go deeper into generic programming. While designing a language that supports parametric polymorphism (e.g., templates in C++, generics in Java, C#), the language designer has a choice between Invariance, Covariance, and Contravariance when dealing with generic types. C++'s choice is "invariance". Let's look at an example.
struct Vehicle {}; struct Car : Vehicle {}; std::vector<Vehicle *> vehicles; std::vector<Car *> cars; vehicles = cars; // Does not compile The above program does not compile because C++ templates are invariant. Of course, each time a C++ template is instantiated, the compiler creates a brand new type that uniquely represents that instantiation. Any other type to the same template creates another unique type that has nothing to do with the earlier one. Any two unrelated user-defined types in C++ can't be assigned to each-other by default. You have to provide a c…